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Figure 1: Deformations of real-world objects are nonlinear, anisotropic, and heterogeneous. Our general energy-based model of hyperelas-
ticity allows the estimation of accurate and robust models for diverse real-world examples, including cloth, skin, or internal anatomy.

Abstract
In this paper, we present a method to model hyperelasticity that is well suited for representing the nonlinearity of real-world
objects, as well as for estimating it from deformation examples. Previous approaches suffer several limitations, such as lack
of integrability of elastic forces, failure to enforce energy convexity, lack of robustness of parameter estimation, or difficulty
to model cross-modal effects. Our method avoids these problems by relying on a general energy-based definition of elastic
properties. The accuracy of the resulting elastic model is maximized by defining an additive model of separable energy terms,
which allow progressive parameter estimation. In addition, our method supports efficient modeling of extreme nonlinearities
thanks to energy-limiting constraints. We combine our energy-based model with an optimization method to estimate model
parameters from force-deformation examples, and we show successful modeling of diverse deformable objects, including cloth,
human finger skin, and internal human anatomy in a medical imaging application.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

A growing interest in computer graphics is to produce simulation
models that match the elastic behavior of deformable objects in
the real world. One possibility to reach this goal is to acquire ex-
ample deformations of real objects, and estimate parameters of
constitutive models that best match the acquired examples. Un-
fortunately, real materials show a high degree of complexity, in
the form of heterogeneity, anisotropy, and nonlinearity. Several
works in computer graphics have addressed this complexity by es-
timating strain-dependent stiffness parameters, both for volumetric
solids [BBO∗09] and for cloth [WOR11, MBT∗12]. However, in
the most general case, these methods fail to enforce a fundamental
property of elasticity: estimated forces are not conservative.

In this work, we propose to model general hyperelastic materi-

als using separable energy addends. With this model, elastic forces
are conservative by construction, and we also show how to en-
force convexity of the total energy. We demonstrate that, with the
right choice of energy terms and basis functions, our model can
exactly match common standard models. But, extending such stan-
dard models, nonlinearity and heterogeneity are easily obtained by
interpolating energy parameters in strain and material space respec-
tively. And we also enable the efficient implementation of extreme
nonlinearity by adding energy-limiting constraints to the model.

A major difficulty when trying to estimate the nonlinearity and
heterogeneity of real-world objects is that the parameter space be-
comes high dimensional and contains local minima. Our additive
energy model allows us to circumvent local minima during pa-
rameter estimation by progressively increasing the number of en-
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ergy addends, nonlinearity control points, and heterogeneity con-
trol points. We have devised a general optimization procedure that
takes as input real-world force-deformation examples and estimates
energy parameters such that simulations match best the measured
forces and deformations or other higher-level metrics (e.g., image
similarity).

Our formulation is general and can be used to model a variety
of real-world objects, including volumetric elastic objects and thin
shells. In this paper, we show the application of our model to the
estimation of complex nonlinearities in cloth, extreme nonlinear-
ities of finger skin deformation, and combined mechanical model
estimation and non-rigid registration of internal human anatomy in
medical imaging data, as shown in Fig. 1.

2. Related Work

Simulation of elasticity has been a major research topic in com-
puter graphics for several decades. Starting with the seminal paper
by Terzopoulos et al. [TPBF87], a wide variety of elasticity models
have been proposed. An approach of growing popularity to model
volumetric solids or thin shells is to adapt continuum models bor-
rowed from computational mechanics, and augment them with fea-
tures to increase robustness and/or efficiency [MG04, ITF04, BJ05,
GHDS03, BMF03, PMS12, NSO12].

Real-world elastic materials present many sources of complex-
ity: hyperelasticity, hysteresis, plasticity, viscosity, or heterogene-
ity. In this work, we focus on modeling heterogeneous hypere-
lasticity. This is a topic of interest in computational mechanics
as well, specially in biomechanics [GOH06]. Several constitutive
models have been designed to capture accurately with few pa-
rameters the behavior of hyperelastic materials, such as the gen-
eral Ogden model, or other variants like neo-Hookean or Mooney-
Rivlin [Ogd97, BW97].

Several works in the past have attempted the estimation of ma-
terial parameters of deformable objects. In biomechanics, Flynn et
al. [FTN11] estimated parameters for hyperelastic models based
on in vivo measurements of human skin. In computer graphics, the
pioneering work of Pai et al. [PvdDJ∗01] introduced a system to
capture and estimate shape, elasticity, and surface roughness by
scanning a volumetric object; Becker and Teschner [BT07] pre-
sented a method to estimate Young’s modulus and Poisson ratio
in a linear FEM formulation by solving a linear least squares prob-
lem; Bickel et al. [BBO∗09] captured nonlinearity by interpolating
stiffness parameters in strain space, and heterogeneity by defining
such strain-space interpolation differently for each element along
the material domain. Our work follows a similar sampling strat-
egy for heterogeneity, but we capture nonlinearity with an energy
model, not stiffness parameters.

For cloth, the traditional method to capture nonlinear elasticity
has relied on the Kawabata Evaluation System (KES) [Kaw80].
Complex machinery is used to exert controllable uniform strain
on cloth samples, and then estimate parameters of elastic mod-
els [BHW94, VMTF09]. Despite the complexity of the capture
setup, KES suffers a major shortcoming: by exciting cloth with uni-
form strain it fails to capture the interplay between different defor-
mation modes. Recent approaches exploit computer vision to cap-

ture arbitrary cloth deformations and then estimate model parame-
ters. Bhat et al. [BTH∗03] tried to extract model parameters from
casually captured videos. More recently, Bouman et al. [BXBF13]
estimate cloth stiffness through the temporal analysis of texture pat-
terns in video. Wang et al. [WOR11] and Miguel et al. [MBT∗12]
advocate for a combination of semi-controlled deformations and
computer-vision-based tracking. Both teams estimate parameters of
nonlinear models. Wang et al. estimate stiffness parameters that de-
pend on the value and direction of the principal membrane strain.
Miguel et al., on the other hand, compare strain-dependent stiff-
ness parameters for individual deformation modes in several popu-
lar cloth models.

Despite the diversity of approaches, the majority of pre-
vious methods that model hyperelastic materials through pa-
rameter interpolation fail to enforce conservative forces. Pre-
vious works [BBO∗09, WOR11] captured nonlinearities by
making the coefficients of a linear strain-stress relationship
strain-dependent, thus making the resulting model nonlinear.

Energy

Unfortunately, this
choice makes forces non-
integrable (and thus not
conservative), as the stress
is no longer guaranteed
to be the derivative of
some energy field. The
inset shows an example
of a triangle with two
fixed vertices and the third one moved in circles. The plot shows
the growing energy, computed as the work done to move the
vertex with a Saint Venant-Kirchhoff (StVK) material model with
strain-dependent Young’s modulus E = ε1 +2ε2 +3ε12, where ε1
and ε2 are stretches, and ε12 is shear strain. With our energy-based
parameterization of hyperelastic materials we achieve conservative
forces by construction.

Another desirable property of elastic objects is that larger de-
formations produce larger forces. We achieve this by enforcing
convexity of the total energy function. Not all standard nonlinear
constitutive models enforce energy convexity explicitly. For exam-
ple, the energy terms in the Ogden model [Ogd97] are defined as
powers of principal stretches. There are no constraints on the val-
ues of these powers, and consequently the model may not be con-
vex. On the other hand, Neo-Hookean models are defined by en-
ergy terms quadratic in the principal stretches, which makes them
convex by definition. Polyconvexity would be a better choice, as
convexity is an excessive constraint that prevents our model from
capturing some real-world effects [MH83], but we found convex-
ity to be a good compromise given that the design of polyconvex
energy functions is still an issue in progress in mechanical engi-
neering [ESN10].

A recent work by Xu et al. [XSZB15], developed concurrently to
ours, succeeds to enforce conservative forces and energy convexity
to materials that fulfill the Valanis-Landel hypothesis. Their focus
is on user-editing of hyperelastic behaviors, mostly stiffening, not
on measurement-based model estimation.

Even though our work is focused on the estimation of hyper-
elasticity, it is worth mentioning previous efforts on model esti-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

ywy
Highlight



E. Miguel & D. Miraut & M. A. Otaduy / Energy-Based Hyperelastic Objects

mation for other relevant deformation effects. In particular, there
are approaches aimed at estimating temporal effects of deforma-
tion due to viscoelasticity [SLS04], or even non-linear viscoelas-
ticity [KVD∗02], elasto-plastic behaviors [ZYZZ, PDP∗15], irre-
versible deformations due to plasticity [KL04], or hysteresis pro-
duced by internal friction in cloth [MTB∗13]. Sifakis et al. [SS-
RMF06] went beyond the estimation of passive mechanical param-
eters, in particular facial muscle activation.

3. A General Model of Hyperelasticity

In this section, we present our model of hyperelasticity based on
the addition of strain-dependent energy terms. We start with the
formal definition of the additive energy model, followed by a de-
scription of strain-dependent energy addends. Then, we discuss the
connections between our model and several standard hyperelastic-
ity models as well. We continue with a description of the enforce-
ment of energy convexity, heterogeneity, and the use of energy-
limiting constraints. Finally, we conclude with remarks concerning
the use of our model in the context of FEM simulations.

3.1. Additive Energy Model

The elastic forces of a hyperelastic material can be defined using
a generic strain energy density function. Given a point X in rest
position, deformed to position x, the deformation gradient is de-
fined as F = ∂x

∂X . Then, the strain energy density can be defined as
a generic function of the deformation gradient, Ψ(X) = f (F(X)).
Alternatively, we can express the energy density as a function of
the Green strain tensor E = 1

2

(
FT F− I

)
, i.e., Ψ(X) = f (E(X)).

Finally, elastic forces can be obtained by differentiating the inte-
gral of strain energy density. With an energy-based definition of
the hyperelastic material, forces are integrable by construction.

The complete strain energy density depends on all terms of the
strain tensor in a complex manner. To simplify the estimation of the
complete energy, we propose an additive formulation:

Ψ(X) = ∑
k

Ψk(ek(X)), (1)

where each Ψk depends on a different subset of the terms in the
strain tensor, ek = {Ei j}. In practice, we use unidimensional or
bidimensional ek, capturing individual deformation components
and interactions between two different deformation components,
respectively. But the model allows for more complex interactions
by increasing the strain terms on which the strain energy functions
depend.

This formulation is very general and it can also represent popular
hyperelastic models, such as StVK, Ogden, Neo-Hookean, or other
invariant-based models [Ogd97]. For example, for the StVK model
the energy addends are given by quadratic terms of the Green strain
tensor, in the Ogden model they are given by various powers of
principal stretches, and in the Neo-Hookean model the energy de-
pends on the first invariant of the left Cauchy-Green strain tensor,
which corresponds to the sum of squared principal stretches.

In computational mechanics, uncoupled formulations use a sim-
ilar principle to separate strain energy into independent com-

ponents. Uncoupled formulations commonly separate volumet-
ric (volume changing) and isochoric (volume preserving) com-
ponents [MEAW12, LSF12], but they have also been used for
components capturing transversely isotropic behaviors [WMG96,
CDH01]. In contrast, our formulation is more general. It cap-
tures arbitrary non-linearities through the interpolated strain energy
functions, and naturally extends to include other effects such as
heterogeneity and constraints (which can include volume preser-
vation). Most importantly, it is designed to accommodate a robust
parameter estimation procedure thanks to the energy addends based
on individual spatial deformation components.

3.2. Interpolated Energy Functions

We design each energy addend as the interpolation of energy sam-
ples in the addend-dependent strain domain:

Ψk(X) = ∑
s

φ(ek(X)− e(s)k )Ψ
(s)
k , (2)

where φ denotes some basis function, e(s)k a particular sample of the

strain component ek and Ψ
(s)
k its corresponding weight.

The choice of basis function allows us to obtain a diverse set
of behaviors. For instance, we can replicate the StVK model. The
strain energy density is formulated as Ψ = λ

2 tr(E)2+µ tr(E2), with
λ and µ Lamé parameters, and E Green strain. In the 2D case, with
stretches E11 and E22 and shear strain E12, this strain energy density
can be rewritten in an additive manner as:

Ψ =

(
λ

2
+µ
)

E11
2

︸ ︷︷ ︸
Ψ1

+

(
λ

2
+µ
)

E22
2

︸ ︷︷ ︸
Ψ2

+λE11 E22︸ ︷︷ ︸
Ψ3

+2µE12
2︸ ︷︷ ︸

Ψ4

. (3)

The energy addends Ψ1, Ψ2 and Ψ4 are unimodal and can be rep-
resented as quadratic energy addends (one quadratic basis function
each). The addend Ψ3, on the other hand, is bimodal and can be
represented using one bilinear basis function.

During data-driven parameter estimation, we use basis functions
with local support. This way, each energy control point is influ-
enced only by a fraction of the input data, thereby simplifying the
structure of the optimization problem. Specifically, for unidimen-
sional strain-energy density functions we use cubic Hermite splines
with equidistant sample points, and for bidimensional components
we use bilinear functions with a regular 3x3 grid of sample points.
For high-dimensional strain domains, we propose clamped Gaus-
sian radial basis functions to interpolate scattered control points.

The power of our proposed additive model lies in its ability to
naturally capture:

• Anisotropy, which could be added, e.g., to (3) simply by using
different functions for the stretch energy addends Ψ1 and Ψ2.

• Additional strain-dependencies (e.g., material hardening), which
could be obtained by adding further control points to each energy
addend.

• Cross-stiffening, which could be modeled with bimodal terms
that relate stretch and shear.

• Volume/Area preservation or strain-limiting, which could be
modeled as energy addends that weight the deviation w.r.t. de-
fault volume, area, or strain values. Patterson et al. [PMS12]
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also formulate volume preservation as an energy addend. In Sec-
tion 3.5 we show how to enforce hard deformation constraints
using energy-limiting constraints.

3.3. Convexity

Convexity of the strain energy density function w.r.t. the deforma-
tion metric ensures that larger deformations lead to larger forces.
As discussed in Section 2, the condition of energy convexity is
too restrictive for some real-world effects, and should eventually
be relaxed in favor of polyconvexity. Convexity also ensures sta-
bility of numerical integration under some choice of time step.
Taking again as example the 2D StVK
model in (3), the bimodal addend Ψ3,
which captures area preservation, is con-
cave. With a regular StVK model, en-
forcing convexity of the total energy is
simple, as it reduces to imposing condi-
tions on the Lamé parameters. The shear
modulus µ is always positive, but a large
negative value of λ can turn the energy
concave along some direction. The inset
shows a deformed triangle and the di-
verging motion due to large negative λ.
With a strain-dependent model, energy convexity is more difficult
to enforce, as it may be locally violated.

An energy function is convex iff the eigenvalues of its Hessian
are always positive. For fully general energy functions this would
require constraining the energy Hessian in the full strain domain.
For bilinear addends, the Hessian is constant; while for cubically
interpolated unimodal addends, it is piecewise linear. This allows
us to limit the enforcement of a convex energy Hessian to the con-
trol points of the energy function. In Section 4.3, we describe the
enforcement of convexity in the context of our optimization frame-
work for parameter estimation.

3.4. Heterogeneity

We model heterogeneity by sampling the deformable object in ma-
terial space at the desired resolution to capture material heterogene-
ity and define a separate additive energy model Ψ

(m) at each sample
point X(m). Then, to obtain the strain energy density at an arbi-
trary test point X in material space, we first evaluate energies at the
sample points using the deformation at the test point X, and then
interpolate these energies using basis functions φ:

Ψ(X) = ∑
m

φ(‖X−X(m)‖)Ψ
(m)(X). (4)

In our examples, we have modeled heterogeneity using scattered
energy samples in material space. In this case, we interpolate strain
energy densities in material space using normalized Gaussian radial
basis functions, but other interpolation strategies are also possible.

3.5. Energy-Limiting Constraints

Modeling extremely stiff materials using strain energy density
functions requires the resolution of stiff systems of equations,

which usually requires tiny time steps and slows down the con-
vergence rate of commonly used solvers.

As an alternative to stiff energy models, we propose to aug-
ment the additive energy model described so far with energy-
limiting constraints. Several authors have enforced in the past con-
straints on strain [Pro95, GHF∗07, TPS09, WOR10, PCH∗13] or
volume [ISF07] to model extreme nonlinearities. Other approaches,
such as u-P formulations in biomechanics, are designed to address
volume preservation. As a small variant, we express constraints on
strain energy density, which allows us to constrain either individ-
ual addends, combinations, or the total energy. In general, energy-
limiting constraints can be expressed as:

C = Ψmax−Ψ(X)≥ 0. (5)

3.6. FEM Simulation

In our examples, we have used FEM to discretize elastic defor-
mation problems. We have tested tetrahedral elements with linear
interpolation and hexahedral elements with trilinear intepolation.
For an introduction to the implementation of FEM for elasticity
problems, we refer the reader to the course by Sifakis and Bar-
bic [SB12]. To compute elastic forces, we first integrate the strain
energy densities over each element using quadrature points (1 point
for tetrahedra and 8 points for hexahedra), and then differentiate
these energies w.r.t. element nodes. Each strain energy density eval-
uation on a quadrature point requires: first, the evaluation of each
energy addend for each nearby material sample, according to (2);
second, the computation of the total energy for each nearby mate-
rial sample, according to (1); and third, the interpolation of ener-
gies from material samples, according to (4). Energy-limiting con-
straints are evaluated and enforced on each quadrature point sepa-
rately.

We have implemented elastic force computation using finite dif-
ferences, which reduces to performing multiple evaluations of each
element’s strain energy (13 for tetrahedra and 25 for hexahedra).
Implicit integration or (quasi-)static simulation also require the
Hessian of the energy, which again we compute through finite dif-
ferences of forces. Finite differences turn out computationally ex-
pensive compared to analytic derivatives, but they provide flexibil-
ity and simplify implementation, hence they are particularly attrac-
tive at the model design stage. Once the energy model is finalized,
it is worth deriving analytic expressions of forces and their Jaco-
bians for improved performance. Finite differences may also suffer
robustness and inaccuracy problems, but this proved not to be an
issue in our implementation.

4. Data-Driven Material Estimation

In this section, we describe an optimization framework for the es-
timation of material parameters in our energy model. Here, we
assume that the parameter set is fixed, but the parameter set can
be progressively refined to circumvent local minima. Later in Sec-
tion 5, we discuss how we use this framework progressively in sev-
eral applications with very diverse deformations and data, ranging
from sparse to dense measurements.

Let us consider a general deformable object with a vector q that
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concatenates all its nodal positions, and a vector f that concate-
nates all nodal forces. Our optimization framework receives as in-
put a set of N example deformations in static equilibrium. Each of
the example deformations is produced from some known bound-
ary conditions (forces fc and/or positions qc), and contains some
known measurements m̄. We consider diverse types of measure-
ments, such as positions, forces, or image intensities.

Given a set of material parameters p, consisting of energy control
points, and their fixed positions in strain-space, the goal of the op-
timization framework is to estimate these parameters such that the
least-squares error between the known measurements m̄ and their
estimated values m(f,q) is minimized, subject to static equilibrium
and energy convexity. We formally define the objective function of
the optimization by summing the error over all examples:

fob j =
1
2

N

∑
i=1

wi ‖mi([qi, fi] (p, fc,i,qc,i))− m̄i‖2. (6)

We enable the possibility to weight examples differently with {wi}.
In the expression above, we explicitly indicate that estimates of
measured variables m depend on simulated positions and forces,
and through these they depend on estimated parameters and bound-
ary conditions. Note that the measured variables and the nodes
where boundary conditions are applied may differ across examples.

Our optimization framework iterates the following three steps
until convergence:

1. Update the parameter set through local optimization.
2. Project parameters to enforce energy convexity.
3. Simulate all examples to static equilibrium.

Next, we discuss these three steps in detail.

4.1. Parameter Estimation

In each iteration of parameter estimation, we minimize (6) subject
to energy convexity and static equilibrium. We treat these two types
of constraints differently. We do not enforce energy convexity dur-
ing parameter updates, and instead, we compute an unconstrained
update and project the parameters to a convex configuration after-
wards, as described in Section 4.3. On the other hand, we enforce
static equilibrium implicitly during parameter updates. We do this
by computing a Jacobian of positions w.r.t. parameters that respects
static equilibrium. After the parameter update, it is anyway neces-
sary to project all examples to static equilibrium, as they may have
slightly deviated.

For each input example, we formulate the Jacobian of positions
w.r.t. parameters ∂qi

∂p through the application of the implicit function
theorem on the static equilibrium constraints. In this case, we do
not use finite differences to compute derivatives because evaluating
positions for a new set of parameters requires solving a quasi-static
problem, which is computationally expensive. In its most gen-
eral formulation, our energy model includes energy-limiting con-
straints; therefore, static equilibrium forces include energy-limiting
constraint forces: fi+Ji

T
αi = 0. In this expression, we assume that

energy-limiting constraints are enforced through Lagrange multi-
pliers, and Ji =

∂Ci
∂qi

is the Jacobian of active energy-limiting con-

straints Ci for the ith example. We denote Lagrange multipliers as

α to avoid confusion with the Lamé constant λ. The enforcement of
hard energy-limiting constraints complicates the application of the
implicit function theorem, as it requires to first solve for Lagrange
multipliers.

However, we observe that the purpose of the implicit function
theorem is just to provide a suitable Jacobian of positions w.r.t.
parameters. Then, for the computation of this Jacobian, we found
that it is sufficient to approximate energy-limiting constraints as
soft constraints with energy 1

2 k‖C‖2, for some large value of the
stiffness k. Taking only active constraints, the static equilibrium in
the ith example can then be reformulated as:

fi− k Ji
T Ci = 0. (7)

Differentiating the static equilibrium constraints (7) w.r.t. the
vector of parameters, we obtain:

∂fi

∂p
− k Ji

T ∂Ci

∂p
+

∂fi

∂qi

∂qi

∂p
− k Ji

T Ji
∂qi

∂p
= 0. (8)

And from this we obtain the Jacobian of positions w.r.t. parameters
that satisfies equilibrium:

∂qi

∂p
=

(
∂fi

∂qi
− k Ji

T Ji

)−1(
∂fi

∂p
− k Ji

T ∂Ci

∂p

)
. (9)

In practice, we evaluate all terms in this expression using finite dif-
ferences, but accounting for sparsity patterns for efficiency. If the
energy model does not include energy-limiting constraints, it is suf-
ficient to drop the related terms from the expression.

By enforcing static equilibrium constraints implicitly in the Ja-
cobian of positions, the optimization problem (6) turns into an (un-
constrained) nonlinear least-squares problem. We solve this prob-
lem iteratively using Gauss-Newton followed by a line-search.
Gauss-Newton requires the evaluation of the derivative of the es-
timates of measurements mi, which can be written as:

∂mi

∂p
=

∂mi

∂qi

∂qi

∂p
+

∂mi

∂fi

∂fi

∂p
. (10)

In this expression, we plug in the Jacobian of constrained positions
(9). The Jacobians of estimates of measurements w.r.t. positions
∂mi
∂qi

and w.r.t. forces ∂mi
∂fi

are trivial when those measured variables
are positions and/or forces, as is the case in some of our experi-
ments. In cases where the measured variables depend in a complex
way on simulated forces and positions, such as image intensity in
one of our experiments, we opt to compute their derivatives w.r.t.
the parameters directly through finite differences.

4.2. Static Equilibrium

After each update of material parameters, we reproject all input ex-
amples to static equilibrium. We use a different method depending
on the type of deformable object and energy model.

For volumetric objects whose energy model does not contain
energy-limiting constraints, we found that Newton-Raphson-type
root-finding performs best. For thin shells (e.g., cloth) with no
energy-limiting constraints, we found that dynamic relaxation with
kinetic damping [Bar88, VMT07] performs best.

For objects with energy-limiting constraints, static equilibrium
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should be posed as the minimization of potential energy (elastic
plus gravitational) subject to the energy-limiting constraints. We
found that, instead of imposing constraints on quasi-static iterative
updates, we obtain better convergence by imposing constraints on
regular dynamic simulations used during dynamic relaxation. For
the enforcement of energy-limiting constraints in dynamic simu-
lations, we use Lagrange multipliers and an LCP solver [CPS92],
analogous to constraint-based solvers for contact problems.

4.3. Convex Energy Projection

We propose to enforce energy convexity on discrete samples of the
strain domain. As discussed in Section 3.3, for the types of en-
ergy functions that we have used in our experiments, we simply
enforce convexity on control points of the energy function. For het-
erogeneous models, this needs to be done for each material sample
independently.

After an unconstrained parameter update, we test the convexity
of the total energy on all control points. If some eigenvalue of the
energy is negative at some control point, we project the parameter
set along the gradient of the eigenvalue until it becomes positive.
We implement this projection as an iterative search along the pro-
jection direction.

5. Results

We have tested our modeling and estimation framework on a vari-
ety of deformable objects and applications. Table 1 summarizes the
main properties of each experiment. The cloth experiment contains
dense, time-coherent data, while the finger and knee experiments
contain very sparse data (4 and 3 example deformations, respec-
tively). Each experiment allows us to test certain aspects of our ap-
proach, and altogether they allow us to validate its generality. All
experiments were executed on a 2.67 GHz Intel Core i7 920 CPU
with 12 GB RAM.

5.1. Cloth Models from Force-Deformation Data

For this experiment, we have used data captured by Miguel et
al. [MBT∗12], specifically data from two of their cloth samples
(knit and denim). They applied slow controlled deformations on
square cloth samples of 100 mm, measured the forces applied
through cables, and captured 3D reconstructions of the deformed
configurations.

Experiment Finger Cloth Knee

Example deformations N 4 30 - 45 3
Size of position vector q 360 893 762
Size of parameter set p 2 22 8 - 32

Number of measurements m 1 60 - 180 >1.0E6

Table 1: Size of the optimization problem for each experiment. The
size of the position vector and the number of measurements refer
to each example deformation. The size of the parameter set p refers
to the number of control points and/or energy constraint values op-
timized.

We discretize the cloth geometry using an irregular triangle mesh
with 520 triangles, and solve que quasi-static problem for each
frame using clip positions as boundary conditions. To formulate
the objective function (6), we use as measured variables the posi-
tions of mesh vertices and the forces on clips attached to the cloth
samples. We start with an isotropic StVK model for membrane de-
formations and the discrete shells model for bending [GHDS03],
and then progressively increase the complexity:

1. Independent addends for stretch, shear and area preservation.
Anisotropy is added to stretch through different addends for
each deformation axis. Area preservation is modeled as a bidi-
mensional energy added depending on warp and weft strain
components.

2. Cross-modal stiffening between stretch and shear, as bidimen-
sional addends depending on warp-shear, and weft-shear strain
components.

3. Nonlinearity on stretch and shear, through strain-dependent en-
ergy interpolation using multiple control points.

4. Addends are made asymmetric.

We did not analyze complex modeling of bending energies. In order
to place the control points, we perform a visual analysis of the input
data to find the populated space of strains. After removing outliers,
we set the initial control points to the boundaries of this space and
progressively increase the number of points. Then, for nonlinear
addends, we progressively add new control points equidistantly.

The training data consists of 30 to 45 keyframes of quasi-
uniform stretch and shear deformation cycles. The test data consists
of complex non-uniform deformations, denoted as corner-pull and
complex shear (See Fig. 2). The figure also shows frames of the
complex deformations simulated with our model and compared to
the test data, as well as error visualizations comparing our full en-
ergy model and a regular StVK model. Table 2 shows the evolution
of position and force RMS error as the energy model is augmented
through the optimization scheme.

This dataset constitutes a challenge for a regular constitutive
model due to the large nonlinearity, anisotropy, and often even
asymmetry in cloth mechanics. This is evidenced by the progres-
sive improvement of the fitting error as energy addends are included
or refined, in particular for the denim sample. The complexity of
the energy function that best describes the full hyperelastic behav-
ior can also be observed in Fig. 3. This figure compares the energy
function after estimating a regular StVK model and after estimating
our final additive energy model. With our energy model, anisotropy,
asymmetry, and strain-dependent nonlinearity are evident.

We also observed that error in the training data was often domi-
nated by forces, not positions. This is expected given that the defor-
mations are produced using positions as boundary conditions And,
as a result, the progressive improvement of the position error in the
training datasets is almost negligible, in contrast to the force error.
We also conjecture that the remaining force error might be domi-
nated by cloth hysteresis, not captured by our model.

5.2. Internal Tissue Model and Image Registration

For this benchmark, we have used 3D MRI data of a knee obtained
by Rhee et al. [RLNN11], which contains volumetric images for 4
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Figure 2: Evaluation of the fitting quality of our energy model on knit (top half) and denim (bottom half) cloth deformations from [MBT∗12].
The first and third rows correspond to corner-pull motions, and the second and fourth to complex shear. None of them was used for training.
The first column shows fitting error with a regular StVK model; the second column the error with our anisotropic, asymmetric, nonlinear
model; the third column the rendered result with our model; and the fourth column the input deformation for reference. The supplementary
video compares the captured frames and quasi-static simulations produced with our model. Note that quasi-static simulations may appear
discontinuous in time, as each frame is solved independently.

different poses of the knee. We have posed the benchmark as the
estimation of image registration between one of the poses and the
rest of the poses, exploiting material estimation as the search space
for image registration. The scenario constitutes a classic problem
for non-rigid image registration, for which many approaches ex-
ist. However, due to the large deviation between the input images,
standard methods fail, as we have attested using ITK. To avoid the
problem of large initial deviations, an alternative is to first design a
patient-specific FEM model, then deform the source image into the
target image using this FEM model, and finally execute the regis-
tration algorithm [HHM∗11].

First, we segmented the leg in the first pose and meshed it with
a tetrahedral mesh (with 822 tets in our example). We then manu-
ally defined a crude correspondence between the 4 input poses (15

point correspondences in our case). We used a subset of 8 corre-
spondences on the outer skin as boundary conditions during the fit-
ting process, and 7 correspondences in the interior for the definition
of the objective function as the sum of squared position deviations.
With this crude data, we estimated a homogeneous StVK model.

Then, we progressively added material samples throughout the
model (but limited to StVK, without other energy addends), until
the optimization converged. For subsequent registration and ma-
terial estimation steps, we defined as objective function (6) the
sum of image differences between the input poses and the de-
formed ones. To evaluate the objective function, we rasterized the
deformed tetrahedral mesh using the source volume as 3D texture
map [GEP∗13], and simply computed image differences w.r.t. the
destination volumes for all voxels inside the tetrahedral mesh.
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Figure 3: Visualization of strain energy functions (square-root of the energy) for knit (top half) and denim (bottom half) cloth samples. The
first and third rows correspond to isotropic StVK model and the second and fourth to the final asymmetric model, including anisotropy,
nonlinearities and cross-modal effects. The second to fourth columns show cross-sections of the energy function.

Knit StVK Aniso. Cross. Nonlinear Asym.

F[keys] (N) 0.3189 0.3171 0.3156 0.2944 0.2860
q[keys] (mm) 0.4149 0.4152 0.4051 0.4079 0.4077
Obj. Func. (%) 100.00 99.123 97.349 87.856 84.097

F[est] (N) 0.3189 0.3171 0.3156 0.2944 0.2860
q[est] (mm) 0.4149 0.4152 0.4051 0.4079 0.4077

F[val] (N) 0.3189 0.3171 0.3156 0.2944 0.2860
q[val] (mm) 0.4149 0.4152 0.4051 0.4079 0.4077

Denim StVK Aniso. Cross. Nonlinear Asym.

F[keys] (N) 2.2236 2.1616 2.1326 1.9511 1.9509
q[keys] (mm) 0.5257 0.5149 0.5114 0.4827 0.4802
Obj. Func. (%) 100.00 94.841 92.539 83.699 78.213

F[est] (N) 1.6308 1.6443 1.6133 1.4401 1.4398
q[est] (mm) 0.5567 0.5584 0.5659 0.5322 0.5335

F[val] (N) 0.9836 0.9548 0.9116 0.8291 0.8281
q[val] (mm) 1.8406 1.9859 1.8364 1.7091 1.6988

Table 2: Evolution of the fitting error for the knit and denim cloth samples as our energy model is refined. We start with a regular StVK model,
and progressively add anisotropy, shear-stretch cross-stiffening, nonlinearity of unimodal energies, and asymmetry. Error is expressed as the
Root Mean Square (RMS) error for forces and positions. We indicate error for the specific keyframes used for model estimation [keys], a
full loading-unloading cycle from which the keyframes were extracted [est], and other deformations not used for estimation [val]. For the
estimation keyframes we also indicate the error ratio w.r.t. the initial estimation with the StVK model.

Table 3 shows the improvement in RMS image error w.r.t. the
homogeneous model as more material samples are progressively

added. Fig. 4 compares the input dataset with the deformation of the

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



E. Miguel & D. Miraut & M. A. Otaduy / Energy-Based Hyperelastic Objects

Figure 4: Evaluation of the fitting quality of our energy model on 3D MRI data of a knee from [RLNN11]. The top row shows the MRI data
deformed with a homogeneous StVK model, the middle row with a heterogeneous StVK model optimized with our approach, and the bottom
row the original data for reference. Along with each of the 3 poses of the knee, we show one cross-section of the dataset (both as a clipped
volume and as a slice view). The small spheres in the volumetric views correspond to markers used during the scanning for knee positioning.

knee volume using the homogeneous model and our heterogeneous
model with 16 material samples.

Samples 2 4 8 16
Error 96.9% 92.7% 85.1% 82.3%

Table 3: Progress of the fitting error in the knee dataset as the het-
erogeneity of the model is progressively refined with more material
samples. The fitting error is expressed as a fraction of the fitting
error with a homogeneous model.

The attached video shows the dynamic behavior of the knee in a
bending scenario. With the homogeneous material the deformation
is quite unrealistic, with rigid parts, such as bones, being clearly
deformed. In contrast, with our heterogeneous model bones and
other stiff tissues behave in a more realistic way and other common
effects, such as bulges, appear.

Our results demonstrate that our energy model can successfully
capture heterogeneity and reduce the fitting error. The registration
results are far from optimal, but the sources of error are multiple
besides possible limitations in our model. For instance, the appli-
cation of boundary conditions was limited to fixing the 15 known
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Figure 5: Simulation of a compressed finger using a regular StVK
model (top) and energy-based constraints (bottom), both estimated
from measured force-area data using our method. Under a force of
4 N, the StVK model collapses. With energy-based constraints, the
finger exhibits the expected extreme nonlinearity of skin and is able
to sustain the applied force.

correspondences on each pose. In addition, we made no assump-
tions about material boundaries, and the registration and material
estimation could be largely improved by adding some rough seg-
mentation of the volume.

5.3. Nonlinear Skin from Finger Pressing Experiments

Our final benchmark involves the estimation of a hyperelas-
tic model of finger skin from controlled force-deformation
data [MDC∗15]. The input data, shown as red dots in Fig. 6, con-
sists of paired values of contact area vs. total normal force for one
subject’s index finger pad. The data was collected keeping the sub-
ject’s finger fixed, with the nail-side resting on a fixed surface,
while a flat transparent moving platform was pressed against the
finger pad. The platform was equipped with a force sensor, and the
contact area was estimated by capturing the image of the pressed
finger through the transparent platform.

In this benchmark, in particular, we have evaluated the estima-
tion of energy-based constraints formulated in Section 3.5 to cap-
ture extreme nonlinearity. We have replicated the capture scenario,
modeling the finger with a 347-tetrahedra mesh fixed on the nail
area. For each of the examples, we move a fixed platform against

Model Linear Nonlinear Constrained
RMS Error (N) 0.4070 0.3256 0.1749

Table 4: Evaluation of the fitting error (expressed as RMS of the
contact force) for the finger experiment. We compare the error be-
tween a linear StVK material, a nonlinear material obtained by
strain-dependent energy interpolation, and a linear StVK material
with the addition of an energy-limiting constraint.).
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Figure 6: Plots of contact force vs. contact area for the finger
dataset. The red dots indicate the input data, and the dashed lines
different choices of our general energy model: (i) linear material
(i.e., regular StVK), (ii) nonlinear material with strain-dependent
energy interpolation, (iii) linear material with an energy-based con-
straint, (iv) and the linear part of the previous case (i.e., ‘Constraint
off’). The energy-based constraint succeeds to capture the extreme
nonlinearity in the input measurements.

the finger pad until the contact area matches the input value. We
formulate the objective function as the difference between the sim-
ulated contact force on the finger pad and the input force value, and
we update the model parameters as described in Section 4.2. In this
benchmark, once a new set of parameters is computed, we enforce
energy convexity and recalculate static equilibrium as described in
Section 4, but we also reposition the moving platform for each ex-
ample to match the input contact area.

We have compared the fitting error with a regular StVK model, a
nonlinear material modeled using strain-dependent energy samples
and cubic interpolation, and the regular StVK model with the addi-
tion of an energy-limiting constraint. The plots in Fig. 6 as well as
the RMS force error shown in Table 4 clearly indicate the success of
our material estimation. Interestingly, as shown in Fig. 5, our model
has some additional advantages. When pressing the finger with the
regular StVK model and a force of 4 N, the model collapses and
tetrahedra get inverted. With energy-limiting constraints, the finger
appears soft at first contact as expected, but then is capable of sus-
taining large forces without further deformation. Handling of tetra-
hedra inversion could also be added to the StVK model [ITF04].

5.4. Performance

Material optimizations of the experiments described in this section
took, approximately: 24h for each cloth sample with the full en-
ergy model, 10h for the finger with the energy-limiting model, and
32h for the knee with 16 material samples. As discussed in Sec-
tion 3.6, we have implemented most derivative calculations using
finite differences, which hampers performance. But other steps of
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the optimization also appeared as clear bottlenecks: solving static
equilibrium in the cloth benchmark, simulation of constrained con-
tact in the finger benchmark, and multiple rasterizations of volume
dataset per gradient estimation in the knee benchmark.

6. Discussion and Future Work

In this paper, we have presented a general formulation of hyperelas-
ticity based on energy addends that allows modeling and estimat-
ing various nonlinear elasticity effects in a separable manner. We
couple our formulation with an optimization algorithm that enables
data-driven estimation of complex hyperelasticity in diverse appli-
cations. Two of the main features of our model are the enforcement
of force integrability and energy-limiting constraints, overlooked in
previous approaches.

The performance of the optimization algorithm could be further
improved. One of its limitations is that, in practice, we do not guar-
antee global enforcement of energy convexity. We enforce convex-
ity only at discrete strain samples, for efficiency reasons. It is worth
looking into simpler ways of enforcing convexity, perhaps by for-
mulating energy addends that are convex in nature, and then global
convexity could be enforced through individual convexity. Another
limitation of our current enforcement of energy convexity is that
convexity constraints are not satisfied implicitly during parameter
updates, only through projection afterwards. The efficiency of the
optimizer would increase by handling convexity constraints implic-
itly, as currently done for static equilibrium constraints.

The current bottleneck in the optimization is the solution of static
equilibrium conditions after every parameter update. Our model
would benefit from faster static equilibrium solvers, as well as more
drastic minimization methods, which would reduce the number of
static equilibrium solves. Concerning the optimization algorithm,
one last limitation is that we rely on gradient-based optimization,
which does not prevent falling in local minima. We partially avoid
such local minima thanks to the incremental increase of complexity
of the parameter space, but with no absolute guarantees.

In addition to hyperelasticity, the example data used in our exper-
iments is likely to exhibit other nonlinearities, such as hysteresis.
Even though modeling such nonlinear effects is orthogonal to our
contribution, the fact that we do not account for them may bias the
estimation of hyperelasticity in some cases.

We have demonstrated the applicability of our energy model in
diverse settings, but further work would be needed to achieve more
accurate results. In particular, in the medical imaging benchmark,
our combined parameter estimation and registration algorithm is
not at the level of specialized registration methods. We instead in-
troduce an interesting spin to regular methods, which handle regis-
tration and model estimation as two separate tasks. For model es-
timation, the results could be largely improved by segmenting the
data, meshing it according to the segmentation, and accounting for
contact between anatomical structures. In the finger skin estimation
example, the input data is rather crude, just a 1D function, hence it
is insufficient for estimating an accurate skin model.

To conclude, in the future we would like to further explore the
additive formulation. It would be interesting to automatically and

progressively identify and learn the best energy addends that both
minimize the number of parameters and ease their estimation, while
allowing simple enforcement of convexity. From a practical point
of view, this would help the users in the task of choosing appropri-
ate energy addends as well as lead to shorter estimation times and
more accurate results.
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